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ABSTRACT

A numerical algorithm suitable for rapid numerical solution of
advanced turbulence-model equations on elliptic regions has been
devised. The algorithm 1s particularly useful for obtaining accu-
rate solutions when (a) one of the dependent variables is singular
approaching a solid boundary and (b) the number of mesh points
available to resolve the flowfleld 1s small. The new algorithm
is used in conjunction with the MacCormack semi-implicit scheme
for solving the time-averaged Navler-Stokes equations to obtain
solutions for a laminar Mach 2 boundary layer and for a turbulent
Mach 3 boundary layer. In both cases, numerical accuracy is shown
to be excellent for meshes having less than 20 points normal to
the surface. As a corollary result of this study we have shown
that, using the new algorithm and the MacCormack scheme, time-
averaged Navier-Stokes solutions are now feasible using a micro-
computer.
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E 1. INTRODUCTION

' Durlng the course of this research project (and also in a numerical
study funded by the NASA Ames Research Centerl) we have found that

conventional time-marching numerical methods encounter serious
difficulty in solving advanced turbulence-model equations: This

, difficulty has impeded our progress toward the ultimate goal of this

f,‘ research project, viz, development of a numerical method for simu-
lating viscous flow in axial turbomachines. Thus, during the past
year our efforts have focused on the cause of and the resolution of

' this numerical difficulty.

- —— ..

Prior to thils study we found that numerically-accurate steady-flow
solutions generally cannot be obtained for complex turbulent flows
under the following conditions: '
( l 1. an advanced turbulence model with additional

dependent variables, one of which usually is
3 singular near so0lid boundaries, 1s used;

2. a severely limited number of points are avall-
{ l able to define the computational mesh for the
reglon of interest;

3. the equations are integrated through the viscous
sublayer.
1 For our axial turbomachine applications, all three of the cogditions
cited above exist. Firstly, we are using the Wilcox-Rubesin  two-
equation model of turbulence which involves a dependent variable
that becomes singular upon approach to a solid boundary. Secondly,
the flowfield in axial turbomachines inherently is three dimensional

L 4

and, because computers have limited memory, we anticipate having no
more than 15 mesh points normal to a blade surface contained within
boundary layers. Finally, because we feel that physically meaning-
ful solutlons on separation regions require integration through the

viscous sublayer, and because we want our method to treat the sepa-

e e Bt

rated case, our applications include integration through the viscous

sublayers.

1 identified two possible sources of

= Prior to this study, Wilcox
inaccuracy and/or numerical instablllty which might plague conven-

1 x tional time-marching methods. He demonstrated that the singular
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behavior of the turbulent dissipation rate near a solid boundary
cannot be accurately computed with central differences. 1In an
unsuccessful attempt at analytically removing the singularity with
a stralghtforward change of dependent variables, improved numerical
accuracy was accompanied by slowly growing numerical oscillations
elsewhere 1in the flowfield. Wilcox speculated that the source of
these oscillations was the numerical-algorithm-induced (and physi-
cally unreallstic) coupling between the turbulence production
processes and the unsteady rate of change of the turbulence.

In this study, we have devised a numerical algorithm which lacks the
shortcomings of conventional, central-differences-oriented, time-
marching methods when applied to turbulence-model equations. The
method's accuracy and stabllity have been assessed 1n two viscous-
flow computations (both performed on a microcomputer), neither of
which can be done accurately with a conventional time-marching
method unless far more mesh points are used.

Section 2 presents the equations of motion and pinpoints the root
causes of the numerical inaccuracy and instabilities encountered in
our attempts to compute viscous flowfields. In Section 3, a new
algorithm is devised to circumvent these difficultles; application to
a simplified turbulence-model equation demonstrates a dramatic impro-
vement 1in numerical accuracy over conventional algorithms. Section

4 presents results of two time-averaged Navier-Stokes computations,
one for a laminar Mach 2 boundary layer and the other for a turbulent
Mach 3 boundary layer. In both cases, results are (correctly)
obtained which appear unobtainable with a conventional time-marching
method. The concluding section summarizes results and conclusions.

The Bilbliography and Contract Overview sectlions summerize publications
and highlights of the overall research effort in this Contract.
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2. EQUATIONS OF MOTION AND ASSOCIATED NUMERICAL DIFFICULTIES

This section first presents the basic equations of motion used in

this project. A summary of the numerical difficulties encountered
in trying to solve these equations follows, including a discussion
of truncation error and numerical stability.

2.1 EQUATIONS OF MOTION

The equations of motion used in all of our computations are those
devised by Wilcox and Rubesin2. The model assumes the Reynolds
stress tensor, TiJ, is proportional to the mean strain-rate tensor,

Sij’ as follows.

su
= 1 k 2
Tij = 2p¢ (Si,j - §gx—k‘ 613) -3 pe Gij (1)

In equation (1), p is mass density, € is the eddy diffusivity, uy is
the velocity vector, x‘j is position vector, 613 is the Kronecker
delta, and e is the turbulent mixihg energy. All quantitiles are

3

understood to be mass averaged in the sense introduced by Favre~.
The mean conservation equations are:

ap 3
3t 5;3 (puJ) = 0

u
] ) _ 9 1 k
3t (pui) + 5;; (pujui) = 5;; {2u(Sij -3 5;; 613) + TiJ
E ] - 9 ' 3T
3t t %y (uE) = 3x; 3“‘1“13 - p8yy) Kk %,

4w+ oo%oe) S0 (W)

J

where t denotes time, p 1s static pressure, u is molecular viscosity,
k is the sum of molecular and turbulent heat diffusivities, T 1s
static temperature, o* 1s a turbulent closure coefficient which will




be discussed below, and E is the total energy defined by the follow-
ing relation.
- 1
E = C,T + Spu,uy + pe (5)

where Cv is specific heat coefficient at constant volume.

In addition to Equations (1-5), the Wilcox-Rubesin model introduces
two additional "rate equations" for the turbulent mixing energy, e,
and the turbulent dissipation rate, w, from which the eddy diffusivity
is computed. The equations are as follows.

au
—g_f (pe) + %}g (puje) = Ty ﬁ - B¥puwe + %ﬁ { (u + o¥pe) 'g—?(;} (6)
2 ou 2
%E (puw?) + %ig (pugu®) = Yoo Ty §§§'- {B + 20 (%%; }pw’
2
R RO = BENCS

J J

The eddy diffusivity, €, and the turbulent length scale, &, are
obtained from e and w according to:

Y¥ e/w (8)
% /0 (9)

e

Finally, we introduce a turbulent Prandtl number, PrT, and express the
turbulent heat flux vector as being proportional to the mean temperature
gradient so that the thermal conductivity, k, in Equation (5) becomes:

k = {u/Prp + pe/Pro}Cy (10)

Where PrL is laminar Prandtl number. Six closure coefficlents appear -
in Equations (6-8), viz, B, B¥*, vy, Y*, o, and o¥. The values of these
closure coefficients have been established from widely observed proper-
ties of turbulent flows. Thelr values are:

B = 3/20 g* = 9/100

o =1/2 o* = 1/2
y* = {1-(1-A?)exp (-Rep)} (11)
yy* = 10/9 { 1-(1-A%)exp (-Rey/2)}

A 1/11
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and the quantity ReT is the Reynolds number of the turbulence defined
in terms of the dependent variables by:

Req = pe/(wy) (12)
Before proceeding to a discussion of bBoundary conditions in the next
subsection, a key point about the equatlons of motion is worthy of
note. In the mean-energy equation (4), note that the last term on
the right-hand side generally is omitted by turbulence modelers. The
origin of this term 1s obvious when the time-averaged equation for
total energy, E, as defined in Equation (5) is derived. If this ferm
is omitted, there is no guarentee that total energy, E, will be con-
served in the flowfield, even when e << CvT' This is true because

its omission can give rise to nonphysical numerical oscillations whose
energy source is unrelated to the physical energy of the flowfield.

2.2 DBOUNDARY CONDITIONS

As noted in the Introduction, in our computation of the flowfields

of interest, we Integrate the equations of motion through the viscous
sublayer. Thus, we must specify boundary conditions for the various
dependent variables appropriate to a solid boundary. Denoting distance
normal to the surface by y, we impose the no-slip velocity boundary
condition at y=0. Additionally, for all compressible applications
considered in this study, the surface is adiabatic. Thus, for the
mean-flow quantities we have:

0 ¢
at y=20 (13)

Uy

3T/ 3y

[}
o

Turning now to the turbulence propoerties, an additional consequence

of the no-slip boundary condition 1s that the turbulent mixing energy
(which is proportional to the square of fluctuating velocity components)
vanishes at a solid boundary. Also, as noted by Wilcox and Rubesinz,

the turbulent dissipation ratc approaches a known analytical form in

the sublayer. For a perfectly smooth surface we have:




e =0 at y =0 (14)
w > vz as y+ 0 (15)

where subscript w denotes surface value.

Equation (15) illustrates a key point about the turbulence-model
equations which 1s worthy of note. Remembering that the characteristic
length scale of the turbulence, £, is inversely proportional to w
approaching a solid boundary implies that & becomes very small. This
is consistent with the physics of turbulence which finds the constraint
of a solid boundary admitting only the smallest eddies. Thus, even
with the great advantages attending the use of long-time averaging
(compared to, say, a large-~eddy simulation), we still must deal with
the problem of resolving very small eddies in a finite-difference com-
putation. This "conservation of difficulty" stands at the center of
the numerical woes attending solution of the turbulence-model equations.

Finally, as will be illustrated in the next subsection, the dissipation
rate is singular (although less strongly than y_2) far above the vis-
cous sublayer. Thus, the numerical difficulties we have encountered
are not caused entirely by our treatment of the sublayer. Rather, all
advanced turbulence models share the same unpleasant (from a numerical
standpoint) behavior.

2.3 TRUNCATION ERRORS

Virtually all finite-difference numerical schemes used for solving

the time-averaged Navier Stokes equations employ central differences.
Usually, such schemes are of second-order accuracy in both time and
space. In our work, for example, we have used variants of the MacCormack
time-splitting methodu_6 which uses second-order accurate, central
differences. Even for relatively crude meshes, such a scheme is sat-
isfactory when the various dependent variables are analytic through-

out the flowfield. However, when one of the dependent variables 1s
nonanalytic, such as w, truncation errors can become very large.

For example, Figure 1 compares the computed near-surface behavior of
w with the theoretical 1limiting form given in Equation (15). The profile

SR SRS ey DNy, e
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shown 1s for a Mach 3, adiabatic-~wall boundary layer. Long experience
with the model equations has shown that, for a wide range of flows

' both incompressible and compressible, very close to the surface
(y+ = uTy/vw < ) Equation (15) is valid. As shown, the computed
values of w are 20% - 30% higher than the theoretical values. Our
experience with these model equations has shown that this large an

‘ error in w has a large effect on predicted flow properties throughout }
'! the boundary layer. !
: j

T‘ The reason such truncation errors persist far above the sublayer be-
: comes obvious upon inspection of the limiting form of w in the loga- |
rithmic (law-of-the-wall) region. As shown by Saffman and w1lcox7, ;

|

-

approaching the sublayer from above we have

u_vp _/p
. w > —a as y++ 0 (16)
' /ETKy

where k¥ = 0.41 is Karman's constant and U is friction velocity. Thus,
even far above the viscous sublayer w is nonanalytic and the use of
central differences is attended by nontrivial truncation errors.

The source of the numerical inaccuracy becomes obvious if we consider

the magnitude of the errors introduced when using central differences
2

! to compute derivatives of w"™ close to the surface. Because we solve
the equations of motion in conservation form, the finite-difference
formulation actually computes pw? which (ignoring density for simplicity)

exhiblits strongly singular behavior, viz,

w? .~y as y+0 (17)

2

It 1s easy to show if we use the exact values of w® at two adjacent

mesh points yJ and yj+1, central differences yield:

(18)




Because of the fine resolution close to the surface (for the point
nearest the surface the computation of Figure 1 has y+ 2 %) the
smallest value of € for the mesh used is 1/5. Using this value for
€ in Equation (18) yields

dw?

(ng =1.27 (35~ (20)
y J+% y exact

Thus, using conventional central differences yields more than a 25%
error when computing derivatives.

In order to illustrate the point that the truncation errors persist
far beyond the sublayer, Figure 2 shows results of a computed
profile obtained from solution of a simplified version of Equation
(7). Specifically, we have dropped all but the dissipation and
molecular diffusion terms so that, for incompressible flow, the
equation simplifies to
v 2208 gy | (21)
dy?

the exact solution of which 1s

_ 20v
The figure shows results of two computations both of which use a mesh
similar to that of the Navier-Stokes computation discussed above.

That 1s, mesh points normal to the surface are spaced in a geometric

progression with progression ratio k = 1.25. In the first computation,

the value of w at the mesh point nearest the surface 1s obtalined from
Equation (22). As shown, the local error close to the surface is in
excess of 50%. In the second computation, Equation (22) is used to
prescribe the value of w for the 10 mesh points nearest the surface
(a procedure used in most of our past computations provided mesh point

number 10 lies below y+ = ). While the local error is reduced signif-

icantly near the surface, there is little improvement in accuracy

farther from y = 0.
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Figure 2. Effect of prescribing near-surface singularity
analytically.
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2.4 STABILITY CONSIDERATIONS

A second, less obvious, numerical difficulty becomes evident upon
considering the stability of a given numerical scheme when applied
to the model equations. A simplified version of the equations for
e and w? which illustrates potential problems is as follows.

de de _ 3%e
3% + u5§ = Pe + vgfr (23)

In Equation (23), P denotes net production, viz, production minus
dissipation. In the case where P is constant, it is easy to show
that even for a typical implicit second-order accurate time-marching
scheme, positive P leads to unconditional instability1 in the classical
sense. This 1s unsurprising however as solutions to Equation (23),
subject to certain initial and boundary conditions, grow exponentially
in time. Thus, even though local errors might be small compared to

the solution itself, they will also grow exponentially. A numerical
analysis of Equation (23) performed in this study verified this in-
stability when P 1s positilve.

A key shortcoming of the model equation (23) is the independence of e
from the mean kinetic energy. In any physical flow, there will not
be an infinite source of energy as implied in Equation (23). Rather,
the coefficient P will increase at the expense of the mean kinetic
energy and u wlll decrease. To simulate this situation we studied

a model in which we have

P = pu? - B¥y (24)
3u? + e = constant (25) .

where p is a constant and an equation similar to Equation (23) is
written for w?. Using MacCormack's explicit scheme , this system
displays no numerical instabillity for Courant numbers less than one.
Thus, as noted in Subsection 2.1, if we are not careful enough in
writing our turbulence model equations to insure conservation of
total energy, unusual numerlcal instability may arise.

11
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However, it 1s still possible for the production term to cause large
numerical excursions from the steady state, especially if the initial
flowfleld is quite different from the long-time solution. In the w
equation, for example, very close to the surface we should find a
balance between dissipation and molecular diffusion. By contrast we
have often observed a strong (nonphysical) coupling between the un-
steady and the dissipation terms which causes w? to become negative.
Hence, the presence of the source terms can present numerical problems
quite unlike those encountered with conventional conservation

equations.

12




3. A NEW ALGORITHM

In this section we present a2 new algorithm which simultaneously
eliminates truncation errors and effectively removes nonphysical
coupling between source and unsteady terms. First we motivate and
present the algorithm; then we apply it to Equation (21).

3.1 MOTIVATION

In a previous study, w1lcox1 tried removing the near-wall singularity
analytically by making the straightforward change of variables:

w? = y/y" | (26)
The function ¢ 1is analytic as y + 0 and presumed a more appropriate
quantity to compute. However, using the MacCormack hybrid explicit-
implicit method5 Wilcox simultaneously (a) improved near-wall
accuracy and (b) introduced large (bounded) numerical oscillations.
While this change of variables eliminates truncation errors, it
apparently aggrevates numerical stability via attending alteration
of the source terms.

To provide motivation for the new algorithm which will be presented
in the following Subsection, it is instructive to consider the
limiting form of the w equation upon approaching y = 0. It 1is easy
to show that the equation has the following form for a constsnt-
pressure boundary layer:

8%wf 4 @ 3wl _p_ 2. (27)

F]
ayz y y yz

where precise details of the coefficients F, p and q are unimportant

(see Equations 34~35 below). Of greatest importance is their behavior
close to the surface where we find:

Viscous Sublayer (y+ < 10)

F>0

q+go asy+0’ y+ < 10 (28)
p-’

y*w?+constant




Wall Layer (10 < y' < 100)

F >0
q-»>1
p+ 4

as y + 0, 10 < yt < 100 (29)
y2w2?+constant

Inspection of Equations (28) and (29) shows that the singularity
changes its strength across the sublayer/wall-layer interface. It
futher suggests that a more-appropriate transformation might reflect f
this fact. '

3.2 THE ALGORITHM

The observations in the preceding Subsection suggest the following
change of varilables:

w? =y yX (30)

where x 1s assumed to be a function of p and q and also of time, t.
Substituting Equation(30) into Equation (7) ylelds

3otov) + B—(ouyy) = Lt ogee) W, 2y ope)%%} (31)

X y oy ax
: {3= (u + ope) OV}j
oy2logy I3y - y2s
(p ¥ ope) = { W ¥ ope - l}x t U ¥ ooe (32)
where
._.Y_e.ta_xj--{a»fzo( )} (33) {

There are three key points about the transformed equations worthy of
note. First, while Equation (31) contains a nonconservation-like
term, viz, the term proportional to 3y/3y, the term shouldn't destroy
numerical stability. The new term will behave more like an extra
convective flux and should be far less troublesome provided it is
differenced 1n a manner consistent with that used for the standard
convective terms.

Second, the coefficlents in the equation for x are directly related

14
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to the p and q appearing in Equation (27). In fact, we have
)
i Y{gy(u + ooe) - ov}

s __
P=~ 17 opc (35)
g‘ > Hence, in the steady state (3x/9t = 0) we have
4 |
,-i x?+(q-1x-p=0 (36)
‘g so that
'
X = %(1 -q) -%/(1 -q) + 4 (37)
where we have selected the root of Equation (36) which ylelds negative
X. Substituting the values of p and q from Equations (28-29) into
’ Equation (37) skowe wooi
E -y, in the sublayer
- < (38)
' X
-2, in the wall layer
Thus, the transformation captures the proper nature of the singularity
» in both near-wall regions. )
The final key point 1is that we have a method which requires no specific
alteration of the particular numerical method used. Central differ-
ences should be satisfactory for computing ¢ as it is an analytic
» function as y + 0.
In summary, the change of dependent variables proposed in Equation (30)
has the following three desirable features:
»
1. It replaces the Pw? type source term with a

more familiar convective-type term;

2. It reflects the varying strength of the w?
singularity in the near-wall region of a
boundary layer;

3. It places no unusual constaint on the type of
numerical algorithm used.

15




In principal, this transformation has very desirable properties.

To provlide a definitive numerical accuracy test, the next Subsection
shows results of its application to Equation (21) for which the exact
solution is known, i.e., Equation (22).

3.3 APPLICATION WITH A SIMPLIFIED MODEL

As our first application of the new algorithm, we consider the limit-
ing near-wall form of the equation for w, viz, Equation (21). This
equation provides a definitive accuracy check as the exact solution
is known and is given in Equation (22). The new MacCormack6 implicit
method 1s used so that we introduce an unsteady term to Equation (21)
and seek the long-time solution. Thus, the actual equation being
solved 1is

2 2,.2
g_:_) = v __,gyw - Bw? (39)

Introducing the transformation defined in Equation (30) leads to the
following equations for ¥ and x:

3y _ . 32 2xv 3y
7 =V 5§¥ + v 3y (4o)
2
(LL2BY)3X = y2 .y - By?uw/v (41)

where w 1s understood to be computed from ¢ and x according to Equation
(30). In the steady state, the exact solution to Equations (40) and
(41) 1s

v = 20v/B (42)

X = -4 (43)

These equations have been solved using a grid with equally spaced
mesh points. Such a grid which would yield even larger truncation
errors than shown in Figure 2 if we solved Equation (39) without the
transformat’.on to y and X. The grid was also constructed to insure
that the nondimensional y coordinate, viz,

(44)

F R




where U is a characteristic velocity, will always be greater than
unity. Early numerical experimentation showed that Equation (41)
is more easily solved if the logy term on the left-hand side re-

tains the same sign throughout the mesh.

The 1nitial profiles for ¢ and x were variled about the exact steady-
state values given 1in Equations (42) and (43).

In all computations, no more than 50 timesteps were required to reach
steady-state. Regardless of the initial conditlions, the solution
converged to within six significant figures of the exact solution.
Thus, at least for this simplified test case, the transformation
defined in Equation (30) yields greatly improved numerical accuracy.

Because the exact solution to Equations (40-41) is ¢ = constant and

X = constant, thls simplified example 1iIs too simple to warrent pro-
claiming the new method as proven. Neverthelers, this test 1is well
defined and, 1f the method falled, there would be little point in
pursuing it any farther. 1In the next Section, we put the new algorithm

to two rigorous tests.




4. TEST CASES

» In this section, we present results of two computations using the
MacCormack implicit time-splitting scheme in conjunction with the
new algorithm. The full equations of motion are solved for two

’ compressible boundary layers with a full time-averaged Navier-Stokes
: ] computer program. The first application 1s to a Mach 2 laminar
L : boundary layer and the second to a Mach 3 turbulent boundary layer.
t

4.1 MACH 2 LAMINAR BOUNDARY LAYER

i Our first application addresses a Mach 2 flat-plate laminar boundary
layer. This case provides a significant test of the new algorithm

for two reasons. First, the near-wall w profile defined in Equation
(15) is known to hold through a significant portion of the boundary
layer so we have a rigorous check on accuracy. Second, previous
computations have often had a nonphysical transition to turbulence
even at very low Reynolds numbers.

' The finite difference mesh consists of rectangular cells with 12
mesh points in the streamwise direction and 16 points normal to the
surface. Mesh points are spaced in a geometric progression with a

Ly TR N -

progression ratio k = 1.20. Computation is initiated from uniform
flow with the upstream boundary just ahead of the plate leading edge.
The downstream boundary lies at a plate-length Reynolds number of

4010“. The computation was run for 50 timesteps. Steady flow con-
ditions appear to have been obtained after about 35 timesteps with
the quantity x taking longest of all dependent variables to approach
steady state. Computing time for this case is six hours on a TRS-80
microcomputer.

» Figure 3 compares a computed w profille with the theoretical near-wall
solution. As 1ndicated, the two solutions are in very close agree-
ment up to about y+ = uTy/v = 8, Above this point the near-wall
solution is not expected to be valid as convective terms become im-

' portant. Thus, we can only check our solution 1in the asymptotiec
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limit y » 0. However, this is precisely the limit of greatest
concern and the overall agreement is excellent.

At no point in the computed flowfield 1s there any evidence of
turbuient energy amplification which might lead to nonphysical
transition. The new algorithm thus appears to eliminate this
undesired computational result.

Because the boundary layer remains laminar in this computation,

the two turbulence model equations play a passive role. To provide
an even more rigorous test we must now turn to a case in which the
model equations play an active role. In our next application we
address such a case.

4.2 MACH 3 TURBULENT BOUNDARY LAYER

In this application we consider a Mach 3 turbulent boundary layer.
Again, the mesh consists of 12 points in the streamwise direction
and 16 points normal to the surface. The mesh point nearest the

surface lies at y+ 2 and the grid points are placed in a geometric

progression with k 1.25. 1Initial profiles are obtained from a

boundary-layer program.

The length of the mesh is 22 boundary-layer thicknesses and Reynolds
number based on plate length extends from 1.8-106 to 2.5'106. The
momentum~thickness Reynolds number 1s 2000 at the upstream boundary.

The main shortcoming of previous Navier-Stokes solutions of the
model equations is that, in addition to w being 20% - 30% too large
in the sublayer, skin friction generally is 15% low. Hence, in
addition to checking the accuracy of the w profile, we must also
check the skin friction.

Figure 4 compares computed and theoretical wu profiles for the near-
wall solution up to y+ = 100. &As shown, the numerical solution 1is
within 8% of the theoretical solution below y+ = 10. Between y+ =10
and 100, the numerical solution asymptotically approaches the wall-
layer profile (Equation 16). Thus, w has been computed far more
accurately than in previous Navier-Stokes calculations (cf Figure 1).
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The skin friction coefficient 1is about 5% lower than in the correspond-
ing boundary-layer computation. This is somewhat surprising as the

w profile 1s actually underpredicted near the surface. Our earlier
arguments would predict a skin friction coefficlient which is some-

what overpredicted. The coarseness of the mesh may be responsible.
Nevertheless, this application indicates a great improvement in
numerical accuracy.

This computation required 125 timesteps to reach steady flow conditions,
partly because the timestep was smaller than in the laminar case and
partly because yx converged to its steady-state value very slowly.

The overall computing time was 15 hours on a TRS-80 microcomputer.
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5. RESULTS AND CONCLUSIONS

The new algorithm appears to greatly improve numerical accuracy of
a time-marching method when used to compute a quantity such as w
which behaves nonalytically approaching a solid boundary. This

1s particularly true when a very crude finite-difference mesh is
employed. Although the algorithm has been tested for relatively
simple flows, we have no reason to suspect it will fail in more
complex applications.

An especially desirable feature of the new algorithm is its indepen-
dence of the actual numerical method being used. In essence, we
have found an analytical method for removing a singularity of vary-
ing strength (y-u very close to the surface, y-2 farther from the
surface). In so doing, the actual equations which are solved
numerically can be accurately solved by any conventional method
using central differences.

Results presented in Sections 3 and Y4 warrent further testing and
development of the technique. The most immediate tests should

be for more complex flows such as shock induced turbulent boundary-
layer separation. More development effort 1s needed to generalize'
the transformation defined in Equation (30) for arbitrary geometry.
After this testing and development has been done we should be ready
to proceed toward our original goal, viz, that of generating accur-
ate numerical solutions for general flow applications such as those
occurring in axial turbomachines.
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CONTRACT OVERVIEW

The overall object of this project has been to develop a method for
i j computing flow through the rotor passages of highly-~loaded axlal
turbomachines. 1Initially the technical approach was to use the MacCormack |
hybrid method5 to compute the inviscid flow and to use a three-dimen- !
sional boundary-layer program to resolve the boundary layers up to i
i ) separation. As the project progressed, it became evident that coupling 57
the inviscid flow program with the boundary-layer program was proving EQ

] far more difficult than anticipated because of numerical problems

. associated with (a) obtaining smooth pressure gradient input for the
ﬂ{ » boundary~layer program and (b) numerically accurate boundary-layer
profiles without using inordinate numbers of mesh points normal to
blade surfaces. Noting the great promise offered by the new MacCormack
implicit methods, we decided to eliminate the coupled inviscid/
! ’ boundary-layer computational procedure in favor of a full time-averaged ]
1 Navlier-Stokes computation.

A sophisticated mesh generation procedure was developed for rotor
Y passages and all program modifications were made to incorporate viscous

stresses 1in the program. H

At this point we found that serious truncation error and numerical
stability problems were present in the computer program which pre-
cluded definitive testing of the method. These problems are dellneated
in Section 2 of this report. In order to analyze and eliminate these

problems, the study reported herein was conducted. Although the
algorithm devised in this study has not been incorporated in our turbo-

bttt -

machine program, we have little doubt that it will resolve the dif-
ficulties encountered.

An additional task was added to the contract to perform computations
for the 1981 Stanford Conference on Complex Turbulent Flows. Results
of those computations appear in Reference U4 of the Bibliography.
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